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SUMMARY

A simplified method of computing eigensolution sensitivity derivatives in

structural dynamics is developed in this paper. It is shown that if the elements

of stiffness and mass matrices associated with a design variable are homogeneous

functions of that design variable, then eigenvalue derivatives can be computed from

element strain and kinetic energies. Furthermore, if cross-mode energies are known,

eigensolution derivatives of modified systems can be computed approximately using

assume mode reanalysis formulation. A ten bar truss example is used to illustrate

the present formulations.

INTRODUCTION

The usefulness of eigensolution sensitivity derivatives in structural dynamics

research is well known. The sensitivity data can be used for approximate

reanalysis, analytical model improvement, assessment of design trend as well as

structural optimization with eigenvalue constraints. When applied to larger discrete

structural models, these applications typically require long and expensive computer

runs and usually the predominate contributor to the computing time was the

calculation of derivatives. Thus efficient eigensolution sensitivity analysis

procedures would be very useful in structural dynamic research. It is the purpose

of this paper to develop, under certain conditions, efficient eigensolution analysis

procedures using free vibration data.

The equations for computing derivatives of eigenvalues and eigenvectors for free

vibration of undamped structures were known for a long time. Only recently have

these methods been implemented in some general-purpose finite-element programs. In

this paper, a simple method is developed which can be used to compute the eigenvalue

derivatives for a large class of problems by exploiting the similarity between the

equations for eigenvalue derivatives and element strain and kinetic energies.

Furthermore, if the cross-mode element energy data are available, the approximate

eigenvector derivatives can also be computed using a truncated modal expansion

expression. The approximate second derivatives of eigenvalues can then be computed.

Additionally, with the cross-mode strain energy data, the eigenvalue derivatives of a

modified structure can be computed using assumed mode reanalysis formulation.

Numerical examples will be presented to illustrate the various formulations.
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EIGENSOLUTIONSENSITIVITYIN STRUCTURALDYNAMICS

The general problem is to compute the rate of change (or derivatives) of
eignevalues and eigenvectors with respect to design variables for the following
generalized eigenvalue problem in structural dynamics.

K¢=AM¢ (1)

Much research has addressed this problem in the past two decades. A

comprehensive survey of literature can be found in a recent paper by Adelman and

Haftka []]. The equations for first order eigenvalue and eigenvector derivatives

as well as second order eigenvalue derivatives are summarized below:

Eigenvalue Derivative:

aA£ T 8K T aM

r r r

(2)

Eigenvector Derivative:

a¢£ n

a-x- = _ A£ij Cj
r j=l

(3)

where for £ _ j

T 8Z£

ARr j = Cj _ ¢_/(_2-_j)
r

(4)

and

ZR = K - h£M

1 T aM

= - i a--f-
r

(5)

(6)

Second Derivative of Eigenvalues:

a2k£ T aZ£ 8¢1 aZ l 8¢i.

8x 8x - Y£ + ¢2 (Sxx 8x + 8x _- )
r s r s s r

(7)

where

.T. a2K a2M aA£ aM aA£ aM

Y£ = _£t_-xS-xx k£ ax ax ax ax ax ax ) CR
r s r s s r r s

(8)

Note that in the above equations, the mode shapes are normalized to unit generalized

mass, i.e.

T
cl'£ M¢£ = 1.0
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For the eigenvector derivatives, if less than full modes are used, Eq. (2) is an

approximate expression. These will lead to approximate second order derivatives of

eigenvalues.

The above equations have been developed in the literature for some time. For

example, Equations (2) and (3) can be found in Fox and Kapoor [2] and Eq. (7) was

reported by Miura and Schmit [3]. It should be noted in passing that there are some

recently developed algebraic methods [4-5] which can be used to compute eigenvector

derivatives without using modal expansions.

The difficulty of applying the aforementioned equations appears to be the cal-

culation of derivatives of stiffness and mass matrices with respect to design vari-

ables. In the next section it will be shown that under certain assumptions, we can

circumvent the calculation of _K/_x i and _M/_x i in implementing these above equations.

SIMPLIFYING ASSUMPTIONS

In general, the system stiffness and mass matrices in Eq. (I) can be written as

ND

K=K + _ K. (9)
c 1

i=l

ND

M = M + Z M. (lO)
c 1

i=l

where

K = contribution to stiffness matrix due to structural elements that are to
c

remain constant during the design process.

M = contribution to mass matrix due to the masses of the unchanged elements as
C

well as nonstructural masses.

Ki,M i = contributions to stiffness and mass matrices respectively due to elements
controlled by design variable x..

1

To develop simplified efficient methods for eigensolution sensitivity analysis,

the elements of the matrices K. and M. are assumed to be homogeneous functions of
1 . 1

design variables. That is the matrzces K. and M. have the form
1 1

)_i *K. = K. (11)i (xi i

Yi *
M. = ) Mi (xi i

where K. and M. are constant matrices.
1 1

parameters

(12)

Furthermore, define non-dimensional design
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xi Pi
i (xi0)

(13)

(14)

Then

or

K. = (x i) K. = (x_ 0) (xi0) K.1 1 1

K = u. (15)i i Ki0

Similarly,

M = 8. (16)i i Mi0

where Ki0 and Mi0 are stiffness and mass matrices due to design variable x. at its
i

nominal value xi0.

Based on the above assumptions, the derivatives of stiffness and mass matrices

with respective to design variables can be computed readily:

8K. Be.
8K i i

8x. - 8x. - 8x. Ki0
1 1 1

or

8K. _i

8x. - x. Ki0
1 1

(17)

Similarly, we can derive

8M _i

8x. = _. Hi0
i 1

(18)

It should be noted that at the nominal design, _. = _. = I.
1 1

tions, the eigenvalue derivatives can he computed readily.

With these simplifica-

RATE OF CHANGE OF EIGENVALUES

Using (17) and (18) with a = _i = I, the eigenvalue derivative, eq. (2) becomes

8A£ _r T Yr T

8x - x #_ Kro _ x A_ #_ Mro #_ (19)
r r r
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Define

1 T
V_r _ = _ #_ Kro 4p_ (20)

1 _£ TT£r £ = _ #£ Mro #_ (21)

Then Eq. (19) can be written as

0k_ _r Yr

0-x- = 2(_- V£r _ x T_r£)
r r r

(22)

Note that from Eqs. (20) and (21), V_r £ and T£r £ can be interpreted as the strain and

kinetic energy respectively of elements associated with design variable x
r"

Thus, given _r and y , the rate of change of eigenvalues can be computed fromr . . .
the energies assoclated with thls design varlable. Since most general-purpose

flnite-element codes provide element strain energy as an output option, one way to

implement (22) is to calculate V£r _ and T_r £ by summing strain energy and kinetic

energy for all elements controlled by design variable x
r"

In the above formulation, we have made use of the form of the stiffness and mass

matrices, Eqs. (II), (12). Not all structural elements can fit into these models but

some important cases do. Some of these are tabulated in Table I.

Using Eqs. (15) to (18), it is possible to derive explicit equations for

eigenvector derivatives as well as second-order derivatives of eigenvalues in terms

of energies associated with various design variables. These are quite tedious and

have not been accomplished so far. In the following, we will discuss the special

case of _i = Yi"

EIGENSOLUTION SENSITIVITIES FOR THE CASE _i = Yi

as:
For this special case, we can use chain rules to rewrite sensitivity derivatives

8A£ OA£ 8a r

Ox O_ Ox
r r r

(23)

Ox O_ Ox
r r r

02A_ 02A_

Ox Ox Ox Ox Ox Ox
r s r s r s

Thus, it remains to find Ok_/O_r, O#Ok£/O_ r and O2h_/OarOas . Note that

(24)

(25)
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OK
r

O_ Kro
r

(26)

OM
r

= MrO (27)
r

Using Eqs. (26), (27) and replacing all Xr, xs in Eqs. (2) to (8) by ar and _s' and

making use of the orthogonality properties of normal modes

T

_ M_j = 0 if _ _ j

as well as the linearity assumptions (Eqs. (15) and (16)), we can derive, after

considerable algebraic manipulation, the following results:

aA_

O_ - C_r _ (28)
r

aOl n

as -
r j=l C_rj _J

(29)

where

82A£ aA_

as as - 2[(8-_- C£r£ +
r s s

C£r j = 2(Vir j - Tir j)

OAg_ n _

C£s_) + _ C£r j Clsj]
r j=1

j_

(30)

(31)

1 T

V_r j = _ (_i Kro (_j (32)

:1A£ TT_rj 2 _ Mro Oj (33)

-- C_r J

C£r j = A£ - A.
3

# j (34)

T_r_

C£r£ - A_
(35)

It should be noted that V_r j can be considered as the "cross mode" strain

energy, since it is the work done by the elastic force in jth mode (i.e. Kr_j) moving

through displacement in the _th mode. Similarly, T_r j can be considered as the

"cross mode" kinetic energy. Thus, eigensolution sensitivity derivatives can be

computed readily when these energy terms become available.
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SENSITIVITYDERIVATIVESFORMODIFIEDSYSTEMS

In iterative analysis, we frequently require the eigensolution derivatives of a
system different from the nominal design. In these situations, assumed mode

reanalysis [6-7] appears to be very efficient. Let AK and AM denote the change to

stiffness and mass matrices, respectively. Then, in term of ei, we have

and

ND

AK = _ (_i- l)Kio (36)
i=l

ND

AM = _ (_i- l)Mio (37)
i=1

Following the development in Ref. 7, the eigensolution of the modified system

can be computed approximately by solving the following reduced eigenvalue problem

q = k M q (38)

where

= sT(K + AK)$

= [AO ] + _ (_i - 1) K'I (39)

= [I] + _ (oi - 1) M'I (40)

where _ is the truncated modal matrix of the original system, and

_. = sT $ (41)
1 KiO

_. = oT _ (42)
i Mi0

Once (37) is solved, the eigenvectors of the modified system Oi' in terms of physical
coordinates, can be completed from

_i = _ qi (43)

For modified systems, the eigenvalue derivatives, Eqs. (28) and (30) are still

applicable except V_r j and T£r j are now defined by

1 T

V£rj = 2 q£ Kr q_ (44)

= ! A£ q_ q£T£rj 2 Mr

and the eigenvector derivatives can be computed from

O_g 8q£

r r

(45)

(46)
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where

aq_ n

a--_-= _ qjr j=l C_rj
(47)

R

C£r j is as defined by (34) or (35) with V_rj, T£r j defined by (44) and (45).

DISCUSSION

In Eq. (7), the second-order derivatives of eigenvalues are shown to be

dependent on eigenvector derivatives. In the present formulation, we can compute

a2A_/a_r a_s Using Eq. (34) without the need to compute eigenvector derivatives

explicitly. Once the derivatives with respective to _'s are known, chain rules can

be used to compute the derivatives with respective to design variables x's (Eqs.
(23) to (25)).

NUMERICAL EXAMPLE

The assumed mode reanalysis sensitivity derivative formulation has been

implemented in a program which post-processes MSC/NASTRAN generated data. The first-

order sensitivity data have been applied to improve analytical model using measured

modal data [8] as well as synthesis of structures with multiple frequency

constraints [9]. Recently the second order derivatives of eigenvalues (Eq. (30))

has also been implemented.

A ten-bar cantilever truss structure, Fig. I, is used to test the program. The

ten members are grouped into 4 design variables as indicated in Figure I. Starting

with a uniform structure with cross sectional area 10 in 2 for all design variables,

the optimal design program described in Ref. 7 is used to mode the first two

natural frequencies from 13.3 and 37.8 Hz to 16 and 39.3 Hz, respectively. This is

accomplished by a sequential linear programming formulation [7,9]. At each

intermediate design, the eigenvalue derivatives are computed using reanalysis

formulations. Table 2 defines the design history. Specifically, the designs at

iteration No. A-O and B-O are analyzed exactly using MSC/NASTRAN. Three iterations

are shown after each exact analysis. The eigensolution at designs A-I to A-3 and

B-I to B-3 are computed using assumed mode reanalysis formulations. Four modes are

used in each case. The first two natural frequencies are tabulated in Table 3.

Also shown in Table 3 are the corresponding exact frequencies. From Table 3, it can

be seen that the accuracy in frequency of assumed mode reanalysis formulation is

very good. Tables 4 to 7 summarize ali/al,ali/ax2,a_/ax I and a_/ax2,

respectively. The results of these tables indicate that the sensitivity derivatives

of modified system can be predicted quite accurately using the assumed-mode

reanalysis formulation.
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CONCLUDINGREMARKS

General procedures for computing eigensolution sensitivity derivatives for a
class of problems have been proposed in this paper. Detailed formulations have been
carried out for a special case. It is shownthat the eigenvalue derivative with a
design variable can be computedfrom strain energy and kinetic energy for that design
variable. Furthermore, when the cross modeenergy terms are available, assumedmode
method can be used for eigensolution as well as associated sensitivity reanalysis.
This efficient formulation has proved to be very effective in synthesis of structures
with multiple frequency constraints [7,9]. Additionally, the present approach can
be implemented in a post-processor of any finite-element programs without the need
to modify the source code.

Since the current formulation provides an efficient approach for computing
second-order eigenvalue derivatives, it would appear that a second-order method for
structural optimization with frequency constraints could be implemented efficiently.
Finally, in view of the success of the formulation for the special case of _i = Yi'

further development for the general case of _i ¢ Yi seemsto be warranted.

SYMBOLS

K = system stiffness matrix
M = system massmatrix
_ = eigenvector of the £th mode

A_ = eigenvalue of the £th mode

= modal matrix of original system

V£r j = cross-mode strain energy

T_r j = cross-mode kinetic energy

X
r

AK

AM

N

n

ND

= rth design variable

= modification in stiffness matrix

= modification in mass matrix

= eigenvector of the th mode of the modified systems

= number of dof of the system

= number of modes computed, n < N

= number of design variables
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TABLEI. - STIFFNESSANDMASSEXPONENTSFOR
SEVERALCOMMONSTRUCTURALELEMENTS

Element Design variable _ y

Truss Cross 1 1
Membrane Thickness 1 1
Plate bending Thickness , 3 1
Beambending Cross-sectional area 2 1
Beambending Section area moment

of inertia* 1 0.5

a,

Circular cross section

TABLE II. - DESIGN HISTORY OF

TEN BAR TRUSS

Iteration

No.
Xl 2 x3 x4

A-0 I0.0 I0.0 I0.0 I0.0

A-I 12.76 8.88 5.0 5.0

A-2 I0.39 8.15 5.0 5.0

A-3 10.44 8.29 5.0 5.0

B-0 10.44 8.29 5.0 5.0

B-I 7.92 7.80 3.44 3.44

B-2 7.47 7.18 2.90 2.90

B-3 7.19 7.0 2.68 2.68

TABLE III. - COMPARISONS OF NATURAL FREQUENCIES

fl(HZ) f2(Hz)
Case Error

No. Approximate Exact (%) Approximate Exact

Error

(%)

A-I 16.88 16.60 1.71 40.16

A-2 15.96 15.78 1.14 39.85

A-3 15.99 15.82 1.10 40.00

B-I 15.90 15.89 0.II 40.23

B-2 15.99 15.98 0.03 39.98

B-3 15.99 15.99 0.00 40.00

39 03

38 99

39 II

39 87

39 44

39 33

2.88

2.19

1.27

0.88

1.37

1.71

TABLE IV. COMPARISON OF 8Al/SX 1 TABLE V. - COMPARISON OF 8_i/8x2

Case 8X/_x 8_/_x
No.

Eq. (28) Exact

Error

(%)

A-I 418.9 454.0

A-2 494.2 509.2

A-3 495.8 505.9

B-I 557.2 578.3

B-2 607.3 609.2

B-3 635.8 620.0

7.7

2.9

1.9

3.7

0.3

2.6

Case 8A/Sx 8_/8x Error

No. (%)
Eq. (28) Exact

A-1 216.7

A-2 208.8

A-3 202.3

B-I 203.8

B-2 203.8

B-3 196.0

294 6

269 9

262 7

205 2

222 9

221 0

26.5

22.5

23.5
0.7

8.6

11.3
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TABLEVI. - COMPARISONOF8k2/SXl TABLEVII. - COMPARISONOF8k2/Sx2

Case 8hlNx 8E/_x Error
No. (%)

Eq. (28) Exact

A-1 -812.2

A-2 -747.4

A-3 -764.7

B-I -1232.3

B-2 -1387.7

B-3 -1482.4

-786 9

-793 9

-805 2

-1247 8

-1320 2

-1435 7

3.2

5.8

9.0

1.2

5.1

3.2

Case 8AlSx 8A/Sx Error

No. (%)
Eq. (28) Exact

A-I 3337.9

A-2 3678.3

A-3 3647.5

B-I 3523.5

B-2 3874.9

B-3 4025.3

3652 3

2917 2

2876 9

2928 3

3038 0

3043 1

31.35

26.1

26.8

20.3

27.5

32.3
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Figure I. Ten Member Cantilever Truss
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